Well I don’t find that in lfs there is a low grip problem in general.
You can see that there isn’t just from the high enough g-forces the car generates.
There is a problem thought seeing how the grip alters in different tire loads.
The low vertically forced tire generates too low grip and the high loaded tire generates too much.
Many have referred to that just saying that tire load sensitivity combined with slip ratios is not working great yet.
That makes antiroll bars and front-rear stifness differences in general, useless in defying the over-under steer characteristics of a car.
Right now stiffness changes in ARB and springs have an effect on the differential-s and damping “synchronization” between front and rear.
It doesn’t matter what stiffness relation is there between front and rear… as soon as you tune the dampers right with the appropriate arb fine tuning, you have almost the same grip limits front and rear in any combination… The only thing that changes is the weight transfer between the front and the rear tires, depending on the roll and pitch stiffness, making some differences in behavior while turning in or accelerating out of a corner.
That’s why rear heavy FZR’s are much more stable with theoretically over steering setups judging from the stiffness. (I am not talking about exact numbers but about stiffness/mass relations) And fwds get even to understeer more with higher real spring and arb rate… and I am not talking only about locked diff sets where that is normal. This happens even with open diff. The only reason that an fwd in LFS might get unstable with a high rear ARB or spring stiffness, is because you have messed the damping balance…
Why I am telling all this?
The inside spinning front wheel in an fwd car has to do with that inside low loaded tire with no grip at all… no matter how hard you try in LFS setting the stiffness in any way, the inside wheel is going to spin even going in 5th gear, having the xfg with 115ps with open diff pooling anything more than 0.8g lateral force… not to mention the 55ps of the uf1.
Of cource gear ratios have to do with the torque that goes to front wheels and their willingness to spin, but that's not the real problem here.
PS [edit]
Anyway there seems to be a working tire load sensitivity model.
That’s why weight transfers during acceleration and deceleration work in the right way. (The heavily loaded end, tends to loose grip first… eg adding weight makes the car loose grip earlier etc.) That's why damping works in the right way (well ok... most of the times ).
But there seems to be a problem on the load “scale” in which that model is effective.