This thread is based on some analysis tristancliffe and myself have been doing based on extreme values that looked very out of place on a alpha version of a programme that estimates the traction budget. (The programme is not yet available to anyone not involved in its development). MonkOnHotTinRoof has been doing some programming and we got some grip values that looked way out of place - most plotted values looked in the right place but some were just way too far out. Mu values in the region of a 6g+ got us wondering weather there is a glitch in our code. This is when Tristan and myself extracted data from the RAF into a spreadsheet and did the same calculations on it. Basically what we are trying to do is work out the coeficient of friction between the road and each tyre. We are using RAF files to get vertical tyre load and lateral and longitudinal force exerted by each tyre. The grip is basically the coeficient of friction.
f_mu = mu * normal reaction
where f_mu is the force exerted by the tyre, mu is the coeficient of friction and normal reaction is the force with which the road is pushing back on the tyre (also equal to the vertical load). From here:
mu = f_mu/normal reaction
f_mu is the total force exerted by the tyre. From simple Phythagoras' theorem we can work out the total force from the lateral and longitudinal tyre force:
Total tyre force = SQRT[(Lateral tyre force)^2 + (Longitudinal tyre force)^2]
Dividing the total tyre force by the vertical tyre load will then give you the coeficient of friction and hence the grip.
We added a few extra columns to the spreadsheed into which we extracted the RAF file for the grip of each tyre and put the appropriate formulea in each. Some mu values even jumped to ~3200. We then investigated when such mu values occur. It apperas that they occur when you are bouncing over curbs, as the tyre is leaving the ground and then making contact with it again. Attached is a graph that Tristan made from the spreadsheet which shows a world record lap at Blackwood with the FZ50 (road version). The speed - distance graph is in pink with the scale on the right. The blue is the mu between the left front tyre and the road against distance. The strange grip values seem to coinside with curb use. The tyre load becomes negative at times which is also very strange - presumably when the tyre is in the air because mu becomes negative over the curbs and then seems to spike dramatically as the tyre comes into contact with the road again, exerting more force than it presumably should and making the car behave strangely. It also seems to be quite high before it drops to a negative as the tyre lifts so it is possible that this behaviour makes tyres exert more force than they should over bumps which may cause instability of light RWD's over bumps in the road.
I am not sure if this behaviour is correct or incorrect, but it certainly sounds strange to me. Any thoughts?
EDIT: Forgot the attachment
f_mu = mu * normal reaction
where f_mu is the force exerted by the tyre, mu is the coeficient of friction and normal reaction is the force with which the road is pushing back on the tyre (also equal to the vertical load). From here:
mu = f_mu/normal reaction
f_mu is the total force exerted by the tyre. From simple Phythagoras' theorem we can work out the total force from the lateral and longitudinal tyre force:
Total tyre force = SQRT[(Lateral tyre force)^2 + (Longitudinal tyre force)^2]
Dividing the total tyre force by the vertical tyre load will then give you the coeficient of friction and hence the grip.
We added a few extra columns to the spreadsheed into which we extracted the RAF file for the grip of each tyre and put the appropriate formulea in each. Some mu values even jumped to ~3200. We then investigated when such mu values occur. It apperas that they occur when you are bouncing over curbs, as the tyre is leaving the ground and then making contact with it again. Attached is a graph that Tristan made from the spreadsheet which shows a world record lap at Blackwood with the FZ50 (road version). The speed - distance graph is in pink with the scale on the right. The blue is the mu between the left front tyre and the road against distance. The strange grip values seem to coinside with curb use. The tyre load becomes negative at times which is also very strange - presumably when the tyre is in the air because mu becomes negative over the curbs and then seems to spike dramatically as the tyre comes into contact with the road again, exerting more force than it presumably should and making the car behave strangely. It also seems to be quite high before it drops to a negative as the tyre lifts so it is possible that this behaviour makes tyres exert more force than they should over bumps which may cause instability of light RWD's over bumps in the road.
I am not sure if this behaviour is correct or incorrect, but it certainly sounds strange to me. Any thoughts?
EDIT: Forgot the attachment