The online racing simulator
Searching in All forums
(984 results)
DaveWS
S3 licensed
I think of DRS as being away to negate or recover the time lost in the dirty air following a car ahead. So what if it's gimmicky, it works. The races are much more exciting than the non-DRS days (although Pirelli has probably had a bigger contribution to that). More variables are a good thing in my book, "fake" or otherwise.

Edit: DRS doesn't just directly create overtaking opportunities either, it also works indirectly allowing the car behind to close up the gap enough a lot of the time to make a pass at some later stage in the lap, or to at least create some "racing" which wouldn't otherwise have happened without it.
Last edited by DaveWS, .
DaveWS
S3 licensed
Very sad indeed. RIP Joe
DaveWS
S3 licensed
http://vimeo.com/33762153



There is definitely still a lot wrong with the NTM in iRacing. As you say we can get away with large slip angles, but the weird thing is most of the time you don't need to countersteer, as the car will wash out again by itself. For bigger slides, again countersteering is a dangerous thing to do, since you can easily snap the other way. The best technique (and this was true with the OTM of course) is to press both pedals and steer further inwards. :|
DaveWS
S3 licensed
Quote from CodeLyoko1 :i dont understand shit from wht you said

He means the Dallara is still on the old tyre model this season.
DaveWS
S3 licensed
Quote from atledreier :Tried the skippy since it used to be the most fun car.

Feels like driving a cooked noodle now. Totally limp feedback, until it spins uncontrollably for no apparent reason.

?????

The Skippy drives great now. Big improvement, much more stable off throttle.
DaveWS
S3 licensed
I don't think there is anything fudged or wrong with regards to the axis of rotation of the cars, but I do certainly agree with the snap issue you describe Pat. It feels plain wrong to me. The HPD for example feels like the most convincing car in the sim since the last update, but there are still situations where you are in a slide (especially if high speed), whereby countersteering does nothing until you reach an "overcorrection" point where the front bites so suddenly you are spat uncontrollably the other way.

Regarding the Skip Barber, I find it behaves horribly under braking in general. The snappiness seems very violent and sensitive when totally off the throttle, and this is further conveyed with a moderate FFB setting. To drive at the limit in the sim while right foot braking is a mega challenge to do, which is why the "throttle braking" is the done thing still, even after the NTM switch. Also it's worth mentioning if you run the Skippy on grass, such as the large grassy areas at VIR, the tyres will snap you into a spin the instant you have even what feels like a fraction of a degree of yaw...

@Hyperactive: I couldn't agree more with your post, and I'm pretty much completely convinced iRacing have that view unfortunately. I hate to see the trend towards making the simulated cars far more challenging and edgy to drive than they should be. Surely that only further alienates those petrol heads who are new to sim racing and expect something comparable with any experience they have from real life.

Also as always great to have your insight Todd.
Last edited by DaveWS, .
DaveWS
S3 licensed
Quote from Juzaa :Just look at the video: Button leaves massive amounts of room to the outside after his turns. ( which means he could've driven the corners faster) and Vettel uses every inch there is on the track. (which means there's not much he could do to improve his lap)

Wat.

Button takes slightly tigher lines through the esses yes, but since they all immediately lead into following turns, this is NOT a slower line. As long as he is hitting his apexes for each "s" (he does), and is on the limit of grip (certainly appears to be), he has extracted the max from those turns. Vettel runs wider yes, but he is close to overdriving. The only other place Vettel uses more of the track is through Spoon, where he runs wide out over the curb, which probably reduced his traction and drive slightly onto the straight, unlike Button who ran out up to the curb, but didn't run over it. The only place I can see where Button obviously left some time on the table is with his conservative line through the final chicane, and taking a wider line during his approach to the start / finish line.
Last edited by DaveWS, .
DaveWS
S3 licensed
Quote from Hyperactive :It's the same grant who drives the lotus 79 with a low rotation steering wheel and says it is awesome. It is the same grant that uses the maximum brake unlinearity number and says its awesome. He is so fast that he can do his best laps on 2nd and 3rd lap out of the pits and he can actually save a slide in the ford gt/lmp. He also teaches chuck norris to drive. All we know he is called Grant.

:clapclap:
DaveWS
S3 licensed
No it's DK's post. Though so far I've learned nothing, and it's an extremely long post. He's basically explaining how tyres should work in real life, rather than addressing the problems with his NTM. :/

Quote from Dave Kaemmer :It appears there is some unhappiness (but also some happiness) with the changes to the new tire model (NTM) that were introduced at the beginning of the current season. I’m going to try to explain where we are with the NTM and address (at least some of) the current concerns. This will be a long post, but bear with me, if you are interested.

It’s important to keep in mind what the new tire model is, and what it isn’t. It is a theoretical model that makes very good tire performance predictions from a few easily measurable quantities. It is not a perfect reproduction of the tires supplied last weekend in the real world for any particular series. While the data (lap times, cornering speeds) that we see on television are certainly helpful in figuring out whether we have the theoretical model predicting stuff properly, it is most important to me that the same model works as we move from a NASCAR tire to a Formula Mazda tire, and that we only have to change the numbers that really do change in the real world, such as the curvature of the tread and sidewalls, the rim and tire radii, the amount of carbon black, silica filler and/or extender oils that might be in the tread compound, the glass transition temperature of the tread rubber, etc. The most important thing is that they behave like tires that might be supplied on a given weekend for a given series under as many conditions as possible. Actually, the most important thing is that they behave like tires under as many conditions as possible. The NTM is already a very good model in that regard. It is not perfect, nor is it completely finished. I’d be the first to tell you that there are areas where it still doesn’t predict as well as I would like, but I’m working hard on those areas, and I’m pretty happy with where it is at the moment.

I’ll move on to more details, with some explanation of the tire temperature readings, wear, and a number of other issues that are being debated in this forum.


Tire temperature readings

These are a source of quite a bit of confusion. In real life, temperatures are taken as soon as possible after a car has rolled to a stop in the pits (sometimes after removal of the tire), by pushing a probe into the tread rubber at three points across the tire, typically at 25% (left), 50% (middle), and 75% (right) of the way across the tread. Sometimes a team will take temperatures at the shoulders (edge of tread) to see if they are in danger of blistering the shoulder from running too much camber. These temperatures are taken at single points laterally on the tread. I refer to these temperature readings as “carcass temperatures”, because they represent the temperature a few millimeters into the tread rubber. In telemetry output, the readings are taken by infrared sensors and so represent the “surface temperatures” of the tread, which can be quite a bit cooler (or hotter) than the carcass temps.

In the iRacing NTM, the carcass temps (which are what you see in the garage or in the tire pop-up info, as opposed to in the telemetry output) actually represent an average temperature over one third of the tire surface, instead of the temperature at a single point. This is something I’ll need to fix someday, because it makes the temps look “wrong”, but the carcass temps are useful as is, because they include the shoulder temps, in a way. What’s wrong is that this almost always results in a higher center temp than edge temp. For now, don’t worry about this. It doesn’t necessarily mean your pressure is too high. In the sim, if you have an edge temp that is higher than the center temp, you are probably running too much or too little camber, or too little pressure.

Depending on the tire pressure and the weight on the tire, there is a patch of tread (the contact patch) that is flattened against the ground. What the carcass temperatures tell you is roughly where your tread contact patch is, and how hard you are working that contact patch. With higher pressure or lower weight, the contact patch gets smaller. With more weight or lower pressure, the contact patch gets bigger. If you lean the tire to the left, the contact patch moves to the left. If you lean the tire to the right, the contact patch moves to the right. To some degree, you can tell roughly how big and where the contact patch is by looking at the temps. The center temp is usually highest because often the contact patch covers a good bit of the center third of the surface, even if it has moved left or right, so all of the center is doing work, all the time. Comparing center temps around the car is a good way to see if the car is balanced, or if one or more tires are doing too much work. The left and right third of the tread are not usually both completely in contact with the road. If they were, then you would see nearly equal carcass temps (actually they could be a little higher at the edges, since the tread is often a little thicker at the shoulders). You will usually get more grip, if this is the case, by increasing the pressure. That makes the contact patch smaller, and gets the shoulders a little off the ground, which makes the contact more efficient (less edge loading).

If the left temp is higher than the right temp, then the contact patch is on average to the left of center on the tire surface, and likewise for a higher right temp. If the split between left and right is higher, then either the contact patch has moved more, or it might be smaller. You will generally get better grip with the contact patch moved left of center for a left turn, and right of center for a right turn. How much is a matter for testing, since it can depend on pressure as well. Read on.

A lot of the carcass temperature is due to rolling drag, which is higher with a larger contact patch, and lower with a smaller contact patch. On a NASCAR oval, the contact patch gets a lot bigger in the corners than it is on the straights, because of the very high loads due to the banking. This increases rolling drag in the corners, and so the carcass will heat up more there. But in the corners, there is also a lot of heat generated at the surface of the tire from sliding. Even when you don’t think you’re sliding, part of the contact patch is, and that generates a lot of heat. On the straights, there’s very little heat generated from sliding, so the surface cools off quickly. This all gets more complicated when you consider that the tire tread band can move back and forth relative to the wheel rim. As cornering forces are generated, the tire tread band is deflected sideways and leans over relative to the rim, which changes the tread’s camber angle, which moves the contact patch sideways. This means the contact patch not only is a different size in the corners, but it moves to the right in a left hand turn, and to the left in a right hand turn. With lower pressures, the sidewalls aren’t as stiff, and the tread band will lean over more. So if you lower pressures a lot, you’ll need to adjust the camber to get the contact patch back where it works best. If you raise the pressure a lot, adjust the camber. Lower pressure generally means more static wheel camber is required, higher pressure means less static wheel camber is required.

You might think I’m just going down a rat-hole, and getting off topic. This is all related to what your tires temps mean, though, so bear with me. The carcass temps are influenced by rolling drag and the sliding work at the tire surface. The contact patch isn’t the same size when cornering as on the straight, though, and it’s not in the same place either. So on the straights, you might get temperature buildup on the left edges (NASCAR example), since the wheels are cambered for the corners, and are leaning over too much on the straights. But in the corners, the contact patch should move to the right and get bigger, which means more rolling drag. Plus now some of the contact patch is sliding, which heats everything up even more. You have to try to read the tire temps in the context of an entire race lap. For example, the left front (sticking to the NASCAR example) is usually set at a ridiculous positive camber, because in the corner, that gives the best contact patch location, and therefore the best grip. However, you will see the outside edge running pretty hot, because not only does that left front have to travel down the straights at its ridiculous positive camber, but it’s doing so at a low pressure, which gives a large contact patch on the straights, and lots of rolling drag. In the corners, low pressure works on the left side because a lot of load transfers over to the right side tires, which makes the left side contact patches smaller (and better for grip). What you see in the carcass temps is the temperature changes over entire laps, averaged over straights and corners. So it’s not easy to make sense of it. Looking at the surface temps in the telemetry output can help identify what’s going on in the corners, since the heat at the surface is closely related to sliding, which mostly happens in the corners.

A lot of energy is flowing around during this process. Heat is generated from rolling and sliding. Some of that heat is absorbed by the ground as it comes in contact with the tire surface. Some heat flows between the surface and the carcass. Some heat convects away into the air, some of it radiates away (but not much). Heat convects into the air inside the tire, flows through the sidewalls and rim (as well as the inner liner, and the air inside the inner liner, if there is one). Of all the numbers involved in this process, the convection coefficients and the thermal properties of the road surface have the largest margin of error at the moment, although I have very decent and defensible quantities for both. It is amazing how very small changes to these numbers can create a lot of controversy. That is just like real life, I guess. The line between “it’s junk”, and “it’s perfect” can be razor thin. In all seriousness, we’ve got things pretty close when the cries of “it’s junk” and “it’s perfect” are equally loud. I do agree that the NASCAR tires don’t seem to be building enough heat currently, although in the beta they were building a bit too much. Just be assured that these temperatures are amazingly close to correct, given all the complexity that goes into them.


Wear

Wear is usually recorded as the amount of tread depth remaining in real life, but we use percent tread depth remaining to make it easier to move from one car/tire to another without having to know tread depths. Passenger car treaded tires have tread depths of between 8 to 11 millimeters, typically. Racing slicks are surprisingly thin. They might have only 2 mm of tread when brand new, even on a NASCAR speedway tire. That’s because the thinner the tread, the less heat buildup from rolling drag. If a NASCAR speedway tire had 3 mm of tread, it would likely overheat. Interestingly, when a tire is worn, it generates less heat from rolling drag (although a bit more from sliding).

The tire wear readings are also given for three points on the tire, and are actually more useful for determining what’s going on on track. That’s because the wear is almost entirely due to sliding, which happens almost entirely in the corners (or under braking or hard acceleration on road courses). So the wear gives a better picture of where the contact patch is while it’s working really hard, which is what we really care about. The wear is also an average over a third of the tire in the sim, as opposed to a spot check at a single point as in real life, so you’re likely to see more wear in the center than on either edge, for the same reasons I talked about above. Again, comparing center wear depths around the car will give you a good idea of where the balance is, or which tires are working hardest in the corners. The edge wear depths give clues about where the contact patch is centered on the tire while cornering, as well as how big the contact patch is. This can be very helpful in setting pressures and cambers, although don’t be afraid to experiment—sometimes the best performance can be had from some other compromise.

As for the wear modeling, it is really close to reality, I don’t care what you say! As an example, the skid marks are really close, and they come right out of the wear calculations. Ok, how dark a few microns thick layer of rubber looks is not something I know directly (and I suspect the skid marks are a bit dim at the moment—I’ve seen some others say the same), but that is easy to change, so any subjective feedback is helpful there. Actually, to be honest there are a couple more things I think are involved in the actual thickness (and darkness) of the rubber layer laid down, having to do with a few of the tread compound properties, but that won’t change things a great deal. More extensive track surface modeling will have the biggest effect. See below.


Lap time fall off on ovals/slow out laps on road courses

This issue is all about the rate of temperature buildup in the tires, and the glass transition temperature of the tread compound. There are many types of rubber, but they are all made up of long chain-like molecules called polymers. The many types of plastics are also polymers. In fact, the only thing that makes plastic hard and glassy, and rubber soft and rubbery, is temperature. Heat a piece of polystyrene (from a plastic model car, say) up to 300 degrees Fahrenheit (150C), and it will behave just like rubber (but don’t touch it!). Or cool a rubber band down to -150 F (-100C, roughly), and it will behave like a piece of plastic (don’t touch it either!!). Most polymers have a particular temperature range (about 50C wide) over which they transition from a glassy state to a rubbery state. The bottom of that temperature range is called the glass transition temperature, for obvious reasons. Polystyrene has a Tg (shorthand for glass transition temperature) of about 100C. Polybutadiene (a particular polymer of interest) has a Tg of about -100C. Since room temperature is typically 25C, you can see that polystyrene is a rigid solid at room temperature, while polybutadiene is like rubber. Polystyrene would not make a good tire tread compound (not on planet Earth, anyway). Polybutadiene also doesn’t make a great tread compound (it’s too weak at typical tread temperatures). But mix the two together into a copolymer containing both butadiene and styrene, and they make a great tread compound, styrene-butadiene rubber, or SBR, which was discovered during World War II. You can mix different amounts together to get rubbers that have different Tg’s.

Why do we care about the Tg of a tread compound? For two reasons. One, the strength of the rubber compound, which determines its suitability as a tread rubber, is related to how far above the Tg it is operated. Two, the higher the Tg, the more heat is built up in the tire as it rolls down the road (more rolling drag). Generally, for racing, we want to use the highest Tg we can, without too much heat buildup. NASCAR stock cars heat tires up more than just about any other type of racecar, since they are heavily loaded, and traveling at very high speeds. Plus the tires are enclosed inside fenders. So NASCAR compounds typically have to have a fairly low Tg, or the tires would overheat. Formula car tires, on the other hand, are mounted on very light cars, and they are hanging out in the fast moving air, so they don’t have as much trouble with heat buildup. A qualifying gumball has such a high Tg that if it’s a little chilly outside, it can crack! But at operating temperature, it really sticks. This is one of the reasons for tire warmers.

If a tire tread is operating too close to its Tg, it’s not rubbery enough and doesn’t deform enough around the little micro-bumps in the pavement to stick well. If it’s too high above its Tg, it’s too weak to stick well. Somewhere in between is the sweet spot where the tire has the best grip. A NASCAR tire’s sweet spot is not far above typical air temperatures, so that’s why the best laps are the first few, when the tire is coldest. As the tire heats up, lap times get worse and worse. The wear has surprisingly little to do with it, although once the tire gets very worn the grip does fall off pretty fast. The lap time fall off has mostly to do with how fast the tire is gaining temperature, which of course can depend on driving style and car setup. As I said earlier, I do think the iRacing NASCAR tires need to gain more temperature than they are currently, and I’m working on some issues related to that.

A softer racing slick might have its sweet spot between 180 and 200 degrees, so when first going out on track it can be a little slippery. One thing to keep in mind is that if you are not driving the car hard enough, it may be that the temperature will start to drop below the temperature of the tire warmers, and grip will go down. F1 drivers have been known to complain that when following the safety car, they can end up with their tires so cold that they don’t have enough grip to heat them back up! I have, since the latest build went out, discovered an issue with how I was modeling some of the properties of the tread compound that affect this process. So, with any luck, we should be able to make better road compounds pretty soon.

*Disclaimer – the whole section above is a massive oversimplification. The sensitivity of rubber to temperature is so great that many of the quantities involved change by several orders of magnitude as the tire goes from ambient temperature to 200F. If the model has a term that is incorrect in its relationship to some other quantity (like this should be the cube root of that, not the square root…don’t laugh), then it would be “completely broken”. Better (in my mind) to find and fix that relationship, than to make sure a lap at Charlotte is within one tenth of a second of what was run there last year. Not that that is unimportant, but it is not a good yardstick to decide whether the model is good or bad.


Track surfaces

Right now in the sim, although there are differing levels of grip on different surfaces, the track surfaces themselves are not modeled as accurately as I would like given what the NTM can do. The thermal properties of asphalt and concrete, for example, are modeled using the same numbers for now, which isn’t strictly correct, but they are not dramatically different and I have had more important pieces to work on (and still do). I will eventually get these surfaces modeled more accurately, which should lead to a different “feel” and differing levels of temperature buildup and wear from track to track.

Technically, the track surfaces are not part of the NTM, but rather the NSM (new surface model). Just saying.


Grip levels/lap times

Lap times depend on tire grip, to be sure. They also depend on thousands of other variables, in addition to the thousands in the tire model that affect tire grip. We work tirelessly (well, sometimes I get tired, but I love my work) to try to improve the accuracy of the sim in every respect. In the perfect world, I would get these thousands and thousands of variables to be accurate to within a tenth of a percent. It’s actually a very cool goal to work toward, because I get to learn a lot. But to actually get there? That’s a pipe dream. Most of these numbers have never been measured in the real world. All we get to see are a few measurements that involve lots of effects all mixed together. Sometimes we get measurements from the world of racing. Sometimes these measurements appear in journal articles about the “viscoelastic master curves of filled SBR compounds”. For a theory to be useful (and the tire model is, at the end of the day, a theory about tire behavior), it has to be able to predict unknown things given some known things. It is good if it can predict things well, without having to measure lots of things that are hard to measure. If you had a theory that could start with the bond dissociation energy of a carbon-carbon single bond (the weakest link in most polymers), which is about 0.000000000000000000578 Joules (and while it isn’t easy to measure, it’s been measured, and it doesn’t change much), and you could (after assigning similarly reasonable basic quantities to many other things) end up predicting lap times at Charlotte in a Cup car to within a few seconds, you’d be frickin’ pumped. There are so many things right with this model I could go on all day. But I do need to get its lap time predictions to within a few tenths. And we’re working on it.

At the moment, we find that our sim predicts lap times that differ from track to track by a bit. Generally, we might be fast at Charlotte, and slow at Texas, for example. We do try to get things close before a major release, which is a good exercise, since it helps us close in on numbers in the model that shouldn’t have to change. These differences are also clues to other effects that we either are not taking into account yet, or for which we might have incorrect numbers. Maybe the asphalt surface at the real Charlotte has a lower thermal conductivity than at Texas. Its density might be different because it has a different type of aggregate in it. Maybe the sun was shining while those qualifying times we’re using were laid down. Maybe a cloud came over. Maybe this compound should have less carbon black in it (we’ll never know, because tire compound engineers are not allowed to talk on the telephone). The more clues we get, the better able we are to separate different effects out and identify what’s really going on. As you can see, this is not a process that has an end date. We figured it was far enough along that you would all prefer the NTM to the OTM, even with a few things yet unknown. I sure do, anyway.

As regards the grip on grass, I’ll leave you with this to ponder: it turns out that there is some data on the tear strength of different varieties of grasses, because apparently the weight gain of cattle is negatively correlated with the tear strength of the grass variety they are grazing on (in other words, cows don’t like grass that’s too chewy), so there have been some scientific studies. And while I don’t have this data in the sim yet (NSM), it’s sitting on my hard drive, just waiting for when I need it. You never know when some measurement will come in handy…


Changes from beta

There is a lot of discussion about what has changed in the NTM between the beta release on the NW car and the latest season’s release. A number of things having to do with temperature build up changed—one example is that in the beta release I was using a constant for the heat capacity of the tread compound, whereas it turns out that the heat capacity is a fairly strong function of temperature for these long-chain hydrocarbons we call rubber. I also changed the thermal properties of the track surface a bit, since the heat buildup seemed too severe in the beta, and I was able to find some better numbers for the thermal conductivity of asphalt aggregates. Now it appears that there’s not enough heat buildup, so I need to correct something else (probably the convection coefficients, but it could be a few other things).

Another thing which changed the feel quite a bit was a change to the sidewall stiffness calculations, especially regarding torsional stiffness. There were a couple of deformation modes I hadn’t taken into account, so in the torsional case, the stiffness’s were too high, and the model was under-predicting the fall off in cornering stiffness with increasing load. I’m still not 100% happy with that, I’ve already found some fixes that will improve things.

Generally, it is almost always the case that things you are unhappy about, we are unhappy about. Sometimes we get some really good data that we know is correct, and it leads us to an unhappy place. The only way out is to figure out what’s wrong with other data that we don’t know so well. We for sure are not going to change the model back to being more wrong just because we like it better that way. Then we’d never learn anything, and we wouldn’t make any progress.

Unfortunately, as we improve things, often car setups need to change. Nowhere is the line between “it’s junk” and “it’s perfect” more razor thin than with car setup. We do our best to come up with baseline setups that work well, and that are good starting points for your own experimentation. Look at it this way: in the real world, if Goodyear shows up with a new tire construction, your car setup is up to you! And that happens all the time. As do rule changes, etc. Coping with change is part of what makes racing interesting. Just wait until we have variable weather and changing track surfaces.


A few other things

What’s still not done? Accurate wear modeling during brake lockup needs work (flat spots, essentially). There currently is no advantage to driving with the brakes locked up, so I thought this was less important than some other things. Rest assured I will correct this at some point, and at that point you will really not want to be locking up your brakes. There is still not tire smoke being generated. I should be able to get that going pretty easily, although it will depend on the lockup code. The NSM.

When will this model be finished, and why is it being so hyped before it is? I started making and learning about racing simulations in 1987, when I started writing Indy 500 for EA. If I had not shipped a sim until I was completely happy with it, you would still not have that one, let alone anything I’ve worked on since. Sad to say, but I will die before I’m happy with a sim I’m creating. And you want it that way. And so do I. I think it’s best for everyone, though, if I have to ship things out from time to time, even though there are ways to improve it. I feel like I’ve made some breakthroughs since the latest build with modeling road course (i.e. softer) compounds—and we would like to get tires made for more cars as soon as we can. But we do need to build setups, test our already released cars, remake setups for those, etc. This has been a huge R&D project, and it is difficult to schedule. I hope this post helps you to understand some of what we face, why it’s worth waiting for, and how cool the model is already.

As for the iRacing 2.0 marketing launch? The reality of this market is that the media is very launch focused; it is difficult to get interest in covering iRacing when it’s already been out for three years. We need to get coverage from time to time, since our biggest problem is that nobody knows about us. I think you would have to agree that we have come a long way since our initial launch in 2008, and we deserve some coverage given how much better the sim is now than it was then. For those of you who are members, you’ve gotten to try iRacing 2.0 way before anyone else—it’s just that you saw it come out in little changes every three months instead of all at once. And you’ll get to see iRacing 3.0 before anyone else as well! But this is not an official announcement. Shhh.


I’m sure there are many questions, even if you’ve managed to read all the way to here. I will try to respond to them (maybe not with a post this long) if I can, although you probably prefer that I keep my head buried in “Physical Properties of Polymers Handbook”. Which is an outstanding book, by the way.

-Dave K

DaveWS
S3 licensed
If you open csr.exe then click the down arrow to then open the editor, you can make sense of the values. It's easy enough to figure out what the values correspond with, such as the sample overlap rpm, volume offset, frequency offset etc.

However the best way to use the program is to actually set all the freq. offsets to 0, if you know the reference rpm for the unaltered sample. If you have a sample recorded at 6000 rpm ( = 100 hz tone), you should set the global frequency range to a value which plays the sample to the same pitch as the actual file at 6000 rpm on the rpm graph in CSR. Unfortunately finding the right global range requires experimentation. You should then in an audio editor edit all the other samples (low, medium, off throttle etc etc) to play at the exact same pitch (i.e. increase the pitch of the idle sample to 6000 rpm), regardless of how silly it may sound, it works in the editor. You then only need to play with the volumes and overlap points while the pitch will correctly match up with the freq. offsets set to 0 for each rpm zone. Just remember to set the global range to match the reference rpm of the samples.

When CSR creates a .dat file, the global range is set to 4.0 by default. For the rpm of your samples to match up, they need to play at ~11,000 rpm. I've made a very minimal MRT folder to demonstrate this. If you open the .wav samples in wmp, they all play at 11,000 rpm. In the CSR editor, with default values, this works perfectly. For samples recorded at 5,500 rpm, the global range should be 8.0. etc.

http://localhostr.com/files/VK4d9lC/MRT.rar

Hope this somehow makes sense.
DaveWS
S3 licensed
Quote from Ball Bearing Turbo :Has anyone tried the DrivingVanishY parameter? Which way moves the view "up"? In LFS I like to make it so I can just see what I need to see in the cars and the rest is all the track. Thanks.

Shift + [ / ] alters the view pitch if you weren't aware.
DaveWS
S3 licensed
Down again!

DaveWS
S3 licensed
Quote from PMD9409 :I don't know what is more amazing. How fast your hands are to downshift that fast, or how fast your right foot is to blip exactly the same each time. Very entertaining to watch.

The car autoblips for christ sake.

Edit: Oh for ****s sake, what is wrong with people? Here's a replay for you guys to analyse: http://localhostr.com/files/GA ... lara_RdAmerica_145809.rpy

Still think something fishy is going on??
DaveWS
S3 licensed
Good luck Thomas!
DaveWS
S3 licensed
Quote from Tuze :I don't understand how they could go so long with this tire model / physics.

Agreed. The current model is rubbish.
DaveWS
S3 licensed
Maybe try this?

http://www.iobit.com/gamebooster.html

Closes down unnecessary background programs and services.
DaveWS
S3 licensed
Your Name: David Williams
Your LFS Username: DaveWS
Driver Number: 127
Team Name: My3id Gaming
Team Website : http://www.my3id.com/gaming
DaveWS
S3 licensed
Quote from TypeRacing :
Feel 4 to slap me




Oh and congratulations Dave

lol
DaveWS
S3 licensed
Quote from BlueFlame :Yes, and I was talking about McLaren's attempt to throw the opposition with a fake unified exhaust exit. There's no point reading a post if all you will do is make your own story out of it.

LOL. I don't think they were trying to pass that off as an engine exhaust. You mistook the cooling vent for an exhaust, and somehow completely missed the grey tubing exiting either side of the engine... Stop trying to cover up your complete lack of understanding of anything.
DaveWS
S3 licensed
Quote from BlueFlame :I agree, the 'exhaust' itself seems to made of Carbon Fibre, first time I've ever seen a CF exhaust before... indication that it is fake.

Plus the position that it is in almost reflects that of an inline cylinder engine, V format engines need more room to go from two banks of cylinders into one single exhaust port. Seems to look a bit odd in that respect. Only time will tell though, maybe it will be made of plastic!

...

Seriously. What you are referring to isn't the engine exhaust. The engine exhaust system is grey maybe plastic tubing low down either side of the engine.
DaveWS
S3 licensed
Quote from BlueFlame :If that's all you have, why not?

If it ain't broke don't fix it and for the record FPS = frames per second in this context, not first person shooter.

Say my eyesight is terrible, what's the point in glasses? Who cares if everything is blurry and I can't make out much detail or read small text?

Muppet.

The extra detail and clarity which comes with HD is awesome, glad to see it in F1 now.

Quote from tristancliffe :I don't think he is full of shit, although he biased against HD.

A good CRT will display a better SD image than an HD TV, simply because it doesn't have to upscale the image. If you have an HD TV then the difference between upscaled SD and native HD is very large and hence people think HD is massively better when it isn't really, they're just comparing two video streams using a device that's designed for the better source.

I think it's more a case of CRT's have a tendency to blur or reduce the obviousness of poor quality artefacts etc that arise with lower bitrate SD TV. An LCD / Plasma TV seems to have such clarity over SD CRT's that it really shows up the artefacts more, and hence SD seems to look worse on an LCD / Plasma.

Edit: Not saying your argument is untrue, since that also applies.
DaveWS
S3 licensed
Very cool, grats Dennis!
DaveWS
S3 licensed
Thanks for organising this, and to all who did turn up. Was a lot of fun! Andris had a really good event, and it could easily have gone his way.
FGED GREDG RDFGDR GSFDG